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Abstract. The O(α) corrections to γγ → ff̄ in the standard model are calculated for arbitrary light
fermions f . The relevant analytical results are listed in a form that is appropriate for practical applications,
and numerical results for integrated cross sections are discussed. The corresponding QED corrections are
generally of the order of some per mille for arbitrary energies. The weak corrections to γγ → e−e+ are
negligible below the electroweak scale, reach the percent level at a few hundred GeV, and grow to about
−10% at 2TeV. The weak corrections to uū and dd̄ production have a shape similar to the one for e−e+,
but they are larger by factors of about 1.4 and 3, respectively.

1 Introduction

Since the suggestion of a photon linear collider (PLC) in
the eighties [1] as an additional option for future e+e− lin-
ear colliders, many studies on the feasibility (see [2] and
references therein) and the physics potential [2,3] of such
a machine have been performed. A PLC provides an excel-
lent device that is complementary to e+e− colliders, as can
be seen from the following examples. Photon–photon col-
lisions allow for a search of Higgs bosons by s-channel pro-
duction and for high-precision tests of the properties of W
bosons, which are produced in pairs with an enormously
large cross section. Moreover, the production cross sec-
tions of charged particles in many models of new physics
are even larger than for comparable e+e− machines [3].
Last, but not least, a PLC allows for various QCD stud-
ies, in particular the investigation of the structure of the
photon itself.

According to the DESY/ECFA study [2], a total γγ
luminosity of 1033 cm−2 s−1, or even 1–2 orders of mag-
nitude higher, can be reached by Compton backscatter-
ing of laser photons off the high-energetic e± beams in
a 500 GeV collider. This production mechanism renders
the luminosity spectrum nontrivial, since neither photon
beam is monochromatic, and a luminosity monitor has to
be sensitive to both photon energies. For this task, the
processes γγ → e−e+, µ−µ+ have been suggested (see [2]
and references therein) as reference reactions. Thus, the
lepton-pair-production cross section should be known to
very high precision.

Exploiting crossing symmetry, the cross sections and
corrections for γγ → e−e+(γ) can be obtained from the
ones for e+e− → γγ(γ) or e−γ → e−γ(γ), which have
been studied in the literature (see [4–7] and references
therein). However, for e+e− → γγ, only results for unpo-
larized photons have been published, and the formulas for

γγ → ff̄ , f 6= e−, cannot be obtained from the above
reactions. Therefore, we have performed an independent
calculation, and have used the existing results only for
checking.

In this paper we calculate the complete O(α) correc-
tions to γγ → ff̄ in the standard model (SM) for arbitrary
light fermions f . We present analytical results that are suf-
ficient for an evaluation of all relevant observables, e.g.,
cross sections and distributions for all polarization con-
figurations. The structure of the radiative corrections and
the leading contributions are discussed in detail. More-
over, we provide numerical results on the integrated cross
sections and the corresponding electroweak corrections for
the different fermion flavours.

The paper is organized as follows: In Sect. 2, we in-
troduce some conventions and list analytical results for
the lowest-order cross sections. In Sect. 3, the electroweak
radiative corrections are classified into QED and weak cor-
rections, and the corresponding analytical results are pre-
sented. The numerical results are discussed in Sect. 4, and
Sect. 5 contains a summary. Explicit analytical expressions
for the relevant scalar one-loop integrals are given in the
appendix.

2 Conventions and lowest-order cross sections

We consider the reaction

γ(k1, λ1) + γ(k2, λ2) −→ f(p, σ) + f̄(p̄, σ̄). (1)

The mass mf of the fermion f is neglected whenever pos-
sible. Otherwise we follow closely the conventions of [8].
The helicities of the incoming photons and of the outgo-
ing fermions are denoted by λ1,2 = ±1 and σ, σ̄ = ±1/2,
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Fig. 1a,b. Tree diagrams for γγ → ff̄

respectively. In the center-of-mass system (CMS), the mo-
menta read

kµ
1 = E(1, 0, 0,−1),

kµ
2 = E(1, 0, 0, 1),

pµ = E(1,− sin θ, 0,− cos θ),
p̄µ = E(1, sin θ, 0, cos θ), (2)

where E is the energy of the incident photons, and θ de-
notes the scattering angle. The Mandelstam variables are
given by

s = (k1 + k2)2 = (p + p̄)2 = 4E2,

t = (k1 − p)2 = (k2 − p̄)2 = −4E2 sin2 θ
2 ,

u = (k1 − p̄)2 = (k2 − p)2 = −4E2 cos2 θ
2 . (3)

The neglect of mf in the kinematics implies that our re-
sults are valid for s,−t, −u � m2

f .
The scattering amplitude of γγ → ff̄ obeys Bose sym-

metry with respect to the incoming photons and – neglect-
ing quark mixing – CP symmetry also. Consequently, the
polarized cross sections dσλ1,λ2,σ,σ̄ are related by

dσλ1,λ2,σ,σ̄(s, t, u)
= dσλ2,λ1,σ,σ̄(s, u, t) (Bose)
= dσ−λ1,−λ2,−σ̄,−σ(s, u, t) (CP)
= dσ−λ2,−λ1,−σ̄,−σ(s, t, u) (Bose + CP). (4)

In lowest order, γγ → ff̄ is a pure QED process and is
therefore invariant under parity (P). Hence, the Born cross
sections obey the additional relations

dσλ1,λ2,σ,σ̄
Born (s, t, u) = dσ−λ1,−λ2,−σ,−σ̄

Born (s, t, u) (P). (5)

The two lowest-order Feynman diagrams1 are shown in
Fig. 1. The differential Born cross section reads

dσBorn

dΩ
(P1, P2) =

N c
f

64π2s
(6)

×
∑

λ1,λ2,σ,σ̄

1
4
(1 + λ1P1)(1 + λ2P2)|Mλ1,λ2,σ,σ̄

Born (s, t, u)|2,

where P1,2 are the degrees of beam polarization, and the
sum on the right-hand side (r.h.s.) includes the desired
polarizations of the outgoing particles. The colour factor
for the fermion f is denoted by N c

f , i.e., N c
lepton = 1

1 All Feynman diagrams in this work have been drawn with
the help of FeynArts [9].

and N c
quark = 3. The squares of the helicity amplitudes

Mλ1,λ2,σ,σ̄
Born are given by

|Mλ1,λ2,σ,σ̄
Born (s, t, u)|2 =




4Q4
fe4 u

t
for λ1 = −λ2 = ±1,

σ = −σ̄ = ± 1
2 ,

4Q4
fe4 t

u
for λ1 = −λ2 = ∓1,

σ = −σ̄ = ± 1
2 ,

0 otherwise.

(7)

The t- and u-channel poles in the squared amplitudes lead
to kinematical singularities in the extreme forward and
backward directions, where we are not interested in the
cross sections, since the fermions escape into the beam
pipe. For leptons, these singularities are of course regu-
lated by a finite lepton mass. For light-quark production in
the forward and backward directions, purely perturbative
calculations are not reliable, since the splitting of a pho-
ton into a nearly collinear quark–antiquark pair involves
QCD effects at very low scales. We avoid the forward and
backward regions by imposing the angular cut

θcut < θ < 180◦ − θcut. (8)

For later convenience, we introduce the step function

gcut(θ) = Θ(θ − θcut)Θ(180◦ − θcut − θ), (9)

where Θ(x) is the usual Heaviside distribution. Integrating
over a symmetric angular range (8), the contributions of
all nonvanishing Born cross sections are equal, and the
integrated, unpolarized cross section reads

σunpol
Born = N c

fQ4
fα2 4π

s

[
ln
(

1 + cos θcut

1 − cos θcut

)
− cos θcut

]
,(10)

where α = e2/(4π) is the fine-structure constant.

3 Electroweak radiative corrections

3.1 Classification of O(α) corrections
and general remarks

Since γγ → ff̄ is a pure QED process in lowest order,
the SM electroweak corrections of O(α) consist of two
separately gauge-invariant types: pure QED corrections
and genuinely weak corrections. The QED corrections in-
clude real-photon emission (see Fig. 2), virtual-photon ex-
change (see Fig. 3), and the corresponding counterterms.
The weak corrections comprise all one-loop diagrams (and
contributions to counterterms) that involve the massive
weak gauge bosons W and Z. For vanishing fermion mass
mf , there are no contributions involving Higgs-boson ex-
change or closed fermion loops2. As a consequence, the

2 There are actually Feynman diagrams involving fermion-
loop contributions to the AAZ∗, AAχ∗, and AAH∗ vertices.
However, these contributions are proportional to the mass of
the produced fermion f [8] and are thus neglected.
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O(α) corrections do not depend on the Higgs-boson or
top-quark masses, nor on the running of α. The weak cor-
rections can be further classified into two subsets3. The
first of these subsets includes all diagrams that contain
internal Z-boson lines (see Fig. 3), and the corresponding
corrections are called neutral-current (NC) corrections in
this paper. The second subset includes all diagrams with
W-boson exchange (see Fig. 4), leading to charged-current
(CC) corrections. Note that only the CC corrections in-
volve nonabelian couplings among the gauge bosons.

The perturbative QCD corrections can be obtained
from the QED corrections by substituting the electromag-
netic coupling factor Q2

fα by the strong coupling factor
4αs/3. The definition of a proper two-jet cross section is,
however, problematic, because jets of radiated gluons can-
not be distinguished from those of quarks. Consequently,
a two-jet cross section includes the case where a gluon to-
gether with one of the quarks cause the two jets, and one of
the quarks disappears in the beam pipe. This contribution
is divergent, owing to the t- or u-channel poles that are not
cut out by this definition of two-jet events. Therefore, a
consistent definition of two-jet events in γγ collisions nec-
essarily involves nonperturbative effects, which will not be
discussed in this paper.

The renormalization of the O(α) corrections turns out
to be extremely simple for γγ → ff̄ . For mf = 0, the
mass renormalization drops out, and only the wave-func-
tion renormalization of the external fields and the charge
renormalization are relevant. Note that the photonic wave-
function renormalization constant exactly cancels against
a corresponding part in the charge renormalization (see for
instance [10]), so that no effects from the photonic vac-
uum polarization remain. Consequently, there is no run-
ning in the electromagnetic coupling α for γγ → ff̄ in
this order. The remaining part of the charge renormal-
ization is the contribution of the photon–Z-boson-mixing
self-energy at zero-momentum transfer, which in the usual
’t Hooft–Feynman gauge consists of a W-boson loop only
and is thus part of the CC corrections.

Virtual one-loop corrections are included in predic-
tions by replacing the squared Born amplitude |MBorn|2
by |MBorn|2 +2 Re{M1-loopM∗

Born}, where M1-loop is the
contribution of the one-loop diagrams to the scattering
amplitude. Thus, the one-loop correction to a lowest-order
cross section is zero whenever the lowest order vanishes,
and we can factorize the one-loop correction dσ1-loop to
the differential cross section into the lowest-order cross
section dσBorn and the relative correction δ1-loop for each
polarization configuration:

dσ1-loop = δ1-loopdσBorn, δ1-loop = δNC + δCC + δvirt
QED.
(11)

According to the above decomposition, δ1-loop is split into
NC, CC, and QED contributions. Since the Born ampli-
tudes are nonvanishing only for λ1 = −λ2 and σ = −σ̄
[see (7)], we introduce ρ = sgn(λ1) = −sgn(λ2) and κ =
sgn(σ) = −sgn(σ̄), and indicate the polarization configu-
rations for the relative corrections δ... in (11) by δρ,κ

... .

3 In the Rξ gauges, these subsets are gauge-independent.

The calculation of the one-loop diagrams has been per-
formed by applying the standard techniques summarized
in [10]. More precisely, tensor one-loop integrals are alge-
braically reduced to scalar integrals, as described in [11],
and scalar integrals are computed using the methods and
results of [12]. Technically, the algebraic evaluation of
the Feynman amplitudes, which have been generated with
FeynArts [9], has been carried out in the same way as de-
scribed in [8] for γγ → tt̄. In particular, the algebraic
manipulations have been performed again twice, once us-
ing FeynCalc [13], and once using our own Mathematica
[14] routines. For γγ → e−e+, the virtual corrections are
related to the ones of e−γ → e−γ [7] by crossing symme-
try, which has been used as an additional check for this
channel.

The evaluation of the real-photon bremsstrahlung will
be described in detail below.

3.2 Weak corrections

The NC corrections for the different polarization channels
are related by Bose and parity transformations as follows:

δρ,κ
NC = δ−ρ,κ

NC

∣∣∣
t↔u

= δ−ρ,−κ
NC

(
gκ

ffZ/g−κ
ffZ

)2
, (12)

where gκ
ffZ is the generic Zff̄ coupling,

gκ
ffZ = −sw

cw
Qf +

I3
f

swcw
δκ−, (13)

with I3
f = ± 1

2 denoting the weak isospin of the left-handed
component of the fermion f . The cosine cw of the weak
mixing angle is fixed by the ratio of the masses MW and
MZ of the weak gauge bosons, i.e., c2

w = 1−s2
w = M2

W/M2
Z.

According to (12), all NC correction factors can be de-
duced from

δ+,−
NC =

α

π

(
g−

ffZ

)2
{(

1 − M2
Z

u

)(
3
2

+
u

t
+

M2
Z

2u
− M2

Z

t

)

× ln
(

1 − u

M2
Z

)
− u

t
ln
(

s

M2
Z

)

+
(s + M2

Z)2

t2

[
ln
(

s

M2
Z

)
ln
(

M2
Z + s

M2
Z − u

)

+ Li2

(
− s

M2
Z

)
− Li2

(
u

M2
Z

)]

− (t − M2
Z)2

t2

[
ln
(

s

M2
Z

)
ln
(

1 − t

M2
Z

)

+ Li2

(
t

M2
Z

)]
+

M2
Z

t
− M2

Z

2u
− 5

4

}
. (14)

Note that the contributions to the one-loop correction
δ1-loop (11) are real quantities; the imaginary parts of the
one-loop integrals do not contribute. The NC correction
(14) agrees with the corresponding correction in [7] af-
ter appropriate crossing. Moreover, we have evaluated the
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Fig. 2a–c. Diagrams for photon bremsstrahlung
in γγ → ff̄ (“crossing” means interchanging the
incoming photon lines)

γ Z, γZ, γ Z, γ
 

 

  

 

 

 

 

a)

 

 
 

 
 

 

 

 

b)

 

 
 
 

 

 

 

 

c)

 
 

 

 
 

 

 

 

d)

  
f

ff

f

f

f
f

Z,

f
f f

f

f

f f

f
f

γ

γ

γ

γ

γ

γ

γ

γf f

f

f

+ crossed graphs

Fig. 3a–d. Diagrams for γγ → ff̄
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change

formulas in [6] for the unpolarized case and find perfect
numerical agreement. We could also reproduce the numer-
ical results for the NC corrections in [6].

The CC corrections vanish for right-handed fermions,
and the corrections for left-handed fermions are related by
Bose symmetry:

δρ,+
CC = 0, δ+,−

CC = δ−,−
CC

∣∣∣
t↔u

. (15)

For δ−,−
CC we explicitly obtain

δ−,−
CC =

α

4πs2
w

Re

{
1
2

− 3tu + M2
Wu − 2M2

Wt

ut
Bw(t)

+
(Qf ′ − Qf )

Qf

2(M2
W − u)2

u2

[
tC̄ww(t) + uC̄ww(u)

]

+
(Qf − Qf ′)2

Q2
f

(
2t

u
[Bw(t) − Bww(s)]

+
st(t + 2M2

W)(t − u)
u2 Dwww(s, t)

+
t(u − t − 2M2

W)
u2

[−sM2
WDwww(s, t)

+sCwww(s) + 2tC̄ww(t) + sCww(s)
]

+
(M2

W − u)2

u2

[
(sM2

W − st − 2t2)Dwww(s, t)

+ (sM2
W − su − 2u2)Dwww(s, u) − 2sCwww(s)

])

+
Qf ′(Qf ′ − Qf )

Q2
f

2(M2
W − u)2

u2

× [(tu + sM2
W)Dww(u, t) − tC̄w(t) − uC̄w(u)

]
+

Q2
f ′

Q2
f

(
2t

u
[B(s) − Bw(t)]

−st(2M2
W − t − 2u)

u2 Cw(s)

+
(s + M2

W)2

u2

[
s(M2

W − t)Dw(s, t)

+sC(s) + 2tC̄w(t)
]

+
(M2

W − u)2

u2

[
s(M2

W − u)Dw(s, u) + sC(s)

+2uC̄w(u)
]) }

, (16)

where Qf ′ = Qf − 2I3
f denotes the charge of the weak

isospin partner f ′ of the fermion f . The functions B...,
C..., and D... are scalar one-loop integrals, the explicit
expressions of which are collected in the appendix. Al-
though some of the scalar integrals contain (logarithmic)
mass singularities, which are regularized by infinitesimal
masses mf and mf ′ , all mass singularities drop out in the
final results for δCC. For f = e−, i.e., Qf ′ = 0, (16) is con-
sistent with the corresponding correction to the crossed
reaction e−γ → e−γ given in [7]. Although our numerical
results on the CC corrections agree quite well with the
ones of [6] for the reaction e+e− → γγ with unpolarized
particles, we cannot reproduce the numbers by making use
of the formulas given there.

Note that the relative weak corrections vanish directly
on the t- and u-channel poles of the lowest-order cross
sections, i.e., the weak corrections are suppressed where
the differential cross section is maximal. This is a conse-
quence of the usual charge renormalization, which defines
the charge e =

√
4πα as the γff̄ coupling for all particles

on shell. Since this kinematic situation holds for forward
and backward scattering, and since the weak box diagrams
do not develop t- and u-channel poles, all weak corrections
are absorbed by the corresponding renormalization terms
in this special situation.

3.3 QED corrections

3.3.1 Virtual corrections

Bose and P symmetry relate the virtual QED corrections
by

δvirt,ρ,κ
QED = δvirt,−ρ,κ

QED

∣∣∣
t↔u

= δvirt,−ρ,−κ
QED , (17)

so that it is sufficient to give one particular polarization
configuration. Introducing an infinitesimal photon mass
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Fig. 4a–j. Diagrams for γγ → ff̄ with
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λ � mf as infrared (IR) regulator, and keeping mf in the
mass-singular terms, we obtain

δvirt,+,−
QED = Q2

f

α

π

{
ln
(−t

λ2

)[
1 + ln

(
m2

f

s

)]

−1
2

ln

(
m2

f

−u

)
+

1
2

ln2

(
m2

f

−t

)

+ ln
(
−s

t

)
+

s

t
ln
(
− s

u

)
+

s2

2t2
ln2
(
− s

u

)
−3

2
+

2π2

3

}
. (18)

Equation (18) can be obtained via crossing from [7]. For
the unpolarized case it is consistent with [4,6].

The IR divergence drops out after adding the real-
photon bremsstrahlung corrections, and the mass singu-
larities cancel completely against mass-singular real cor-
rections caused by collinear photon emission, since only
final-state particles radiate off photons.

3.3.2 Real corrections

Real-photon emission in γγ → ff̄ leads to the kinemati-
cally different process

γ(k1, λ1) + γ(k2, λ2) −→ f(p, σ) + f̄(p̄, σ̄) + γ(k′, λ′),
(19)

with k′ and λ′ denoting the momentum and helicity of
the radiated photon, respectively. While the incoming mo-
menta k1,2 are the same as for γγ → ff̄ , as specified in
(2), in the CMS, the outgoing momenta read

pµ = Ef (1,− cos φf sin θf ,− sinφf sin θf ,− cos θf ),
p̄µ = Ef̄ (1, cos φf̄ sin θf̄ , sinφf̄ sin θf̄ , cos θf̄ ),

k′µ = E′(1, cos φ′ sin θ′, sinφ′ sin θ′, cos θ′). (20)

The lowest-order cross section for γγ → ff̄γ, which yields
an O(α) correction to γγ → ff̄ , is given by

σγ(P1, P2) =
N c

f

2s

∫
dΓ

×
∑

λ1,λ2,σ,σ̄,λ′

1
4
(1 + λ1P1)(1 + λ2P2) |Mλ1,λ2,σ,σ̄,λ′

γ |2,

(21)

where the phase-space integral is defined by∫
dΓ =

∫
d3p

(2π)32Ef

∫
d3p̄

(2π)32Ef̄

∫
d3k′

(2π)32E′

× (2π)4δ(k1 + k2 − p − p̄ − k). (22)

We have calculated the helicity amplitudes Mγ in two
different ways. One calculation is performed by applying
the Weyl–van der Waerden spinor technique (see [15] and
references therein); the second calculation makes use of
an explicit representation of spinors, polarization vectors,
and Dirac matrices. For mf = 0 the helicity structure
forces many helicity amplitudes to vanish. In particular,
Mγ is zero if σ = σ̄ or λ1 = λ2 = −λ′. Moreover, Bose,
CP, P, and crossing symmetries for in- and outgoing pho-
tons lead to relations among the helicity amplitudes. In
order to keep things independent of phase conventions,
we formulate these relations for |Mγ |2:

|Mλ1,λ2,σ,σ̄,λ′
γ |2 = |Mλ2,λ1,σ,σ̄,λ′

γ |2
∣∣∣
k1↔k2

(Bose)

= |M−λ1,−λ2,−σ̄,−σ,−λ′
γ |2

∣∣∣
p↔p̄

(CP)

= |M−λ1,−λ2,−σ,−σ̄,−λ′
γ |2 (P)

= |M−λ′,λ2,σ,σ̄,−λ1
γ |2

∣∣∣
k1↔−k′ (crossing).

(23)

Because of these relations, only one independent nonvan-
ishing helicity amplitude is left, for which we take

|M+,−,−,+,+
γ |2 = 4Q6

fe6 (p · k1)2(p · p̄)
(p · k2)(p · k′)(p̄ · k2)(p̄ · k′)

(24)
in agreement with [5]. From this particular |Mγ |2 we can
read off all different kinds of singularities that can occur
for γγ → ff̄γ. Firstly, there are collinear poles if f or f̄
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are scattered into forward or backward directions, similar
to forward or backward scattering in γγ → ff̄ . In this
case, we again apply angular cuts, in order to exclude the
possibility that f or f̄ escape into the beam pipe, i.e., we
assume

θcut < θf , θf̄ < 180◦ − θcut. (25)

Secondly, we encounter the usual soft and collinear singu-
larities if k′ becomes soft or collinear to p or p̄. These sin-
gularities are the counterparts to the IR and mass singu-
larities in the virtual QED corrections given in Sect. 3.3.1;
they have to be regularized, as in the virtual case, by the
infinitesimal photon mass λ and the fermion mass mf . In
the following, we describe three different procedures for
the treatment of these singularities.

(i) IR phase-space slicing and effective collinear factors.
In order to apply phase-space slicing to the IR singular-
ity, we exclude the region E′ < ∆E from the phase space
so that the IR singularity is regularized by the cut en-
ergy ∆E � E. In the soft-photon region λ < E′ < ∆E,
the asymptotic form of the exact differential cross section
is known to factorize into the lowest-order cross section
without photon emission and a universal eikonal factor,
which depends on the photon momentum (see, e.g., [10]).
The integration over the soft-photon phase space, which is
carried out in the CMS, yields the simple correction fac-
tor δsoft to the differential Born cross section dσBorn for
γγ → ff̄ :

δsoft = −Q2
f

α

π

{
2 ln

(
2∆E

λ

)[
1 + ln

(
m2

f

s

)]

+
1
2

ln2

(
m2

f

s

)
+ ln

(
m2

f

s

)
+

π2

3

}
. (26)

The factor δsoft does not depend on the polarizations of
the produced fermions and of the incoming photons, and
its dependence on λ obviously cancels against the one in
δvirt
QED given in Sect. 3.3.1.

The remaining phase-space integration in (21) with
E′ > ∆E still contains the collinear singularities in the
regions in which (p · k′) or (p̄ · k′) is small. In these re-
gions, however, the asymptotic behaviour of the differen-
tial cross section (including its dependence on mf ) has a
well-known form (see, e.g., [16]). The singular terms are
universal and factorize from dσBorn. A simple approach to
include the collinear regions consists in a suitable modifi-
cation of |Mγ |2, which was calculated for mf = 0. More
precisely, |Mγ |2 is multiplied by an effective collinear fac-
tor that is equal to 1 up to terms of O(m2

f/s) outside
the collinear regions, but replaces the poles in (p · k′) and
(p̄ · k′) by the correctly mass-regularized behaviour. Ex-
plicitly, the described substitution reads∑

λ′=±1

|Mλ1,λ2,σ,σ̄,λ′
γ |2

→
∑

τ,τ̄=±1

fτ (xf , Ef , αf )fτ̄ (xf̄ , Ef̄ , αf̄ )

×
∑

λ′=±1

|Mλ1,λ2,τσ,τ̄ σ̄,λ′
γ |2. (27)

The functions f± describe collinear photon emission with
and without spin flip of the radiating fermion,

f+(xf , Ef , αf ) =

(
4E2

f sin2(αf

2 )

4E2
f sin2(αf

2 ) + m2
f

)2

,

f−(xf , Ef , αf ) =
x2

f

x2
f + 2xf + 2

4m2
fE2

f sin2(αf

2 )

[4E2
f sin2(αf

2 ) + m2
f ]2

,

xf =
E′

Ef
, (28)

where αf = 6 (kf ,k′) is the angle of the photon emission
from f . The functions f± describing photon emission from
f̄ follow by substituting f → f̄ everywhere. More details
on this method can be found in [7,17], where it is applied
to e−γ → e−γγ, e−Zγ.

(ii) IR and collinear phase-space slicing. Instead of us-
ing effective collinear factors, one can also apply phase-
space slicing to the collinear singularities, i.e., the collinear
regions are excluded by the angular cuts ∆α < αf , αf̄

with ∆α � 1. The integration over the collinear regions
is particularly simple for final-state radiation (see also
[7,17]), since collinear photon emission does not affect the

kinematics in the factorized Born cross section dσBorn of
the nonradiative process γγ → ff̄ . The corrections from
collinear photon emission can thus be described by cor-
rection factors δ±

coll to dσBorn,

dσcoll(σ, σ̄) = 2δ+
colldσBorn(σ, σ̄) + δ−

colldσBorn(−σ, σ̄)

+δ−
colldσBorn(σ, −σ̄), (29)

where

δ+
coll = Q2

f

α

2π

{[
ln

(
m2

f

∆α2E2

)
+ 1

]

×
[
2 ln

(
∆E

E

)
+

3
2

]
+

5
2

− 2π2

3

}
,

δ−
coll = Q2

f

α

4π
. (30)

Note that the sum of the soft and collinear corrections
without spin flip, i.e., δsoft + 2δ+

coll, comprises all IR- and
mass-singular terms originating from real-photon emis-
sion; after adding δvirt

QED, all lnλ and lnmf terms drop
out. On the other hand, the corrections due to δ−

coll are
the only sources for final-state ff̄ pairs with σ = σ̄.

(iii) Subtraction method. The idea of the subtraction
method is to subtract and to add a simple auxiliary func-
tion from the singular integrand. This auxiliary function
has to be chosen such that it cancels all singularities of
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the original integrand so that the phase-space integration
of the difference can be performed numerically. Moreover,
the auxiliary function has to be simple enough so that
it can be integrated over the singular regions analyti-
cally, when the subtracted contribution is added again.
In the following, we apply a modification of the so-called
“dipole formalism” [18], which was formulated for next-
to-leading-order QCD corrections involving unpolarized
massless partons. In the modified version of this formal-
ism, all divergences are regularized by photon and fermion
masses, and polarization is allowed [19].

When the dipole formalism is applied to photon radia-
tion, the combinatorial part in the construction of the sub-
traction function is rather simple. The subtraction func-
tion consists of contributions labelled by all ordered pairs
of charged external particles, one of which is called emit-
ter, the other spectator. Specifically, for γγ → ff̄γ we get
two contributions: In the first case, f plays the role of the
emitter and f̄ the one of the spectator, and in the sec-
ond case, the roles are reversed. The two functions that
are subtracted from

∑
λ′ |Mγ |2 in the phase-space integral

are given explicitly by

|Mλ1,λ2,σ,σ̄
sub,1 |2 =

Q2
fe2

(p · k′)

[
2

1 − z1(1 − y1)
− 1 − z1

]
×|Mλ1,λ2,σ,σ̄

Born (s, t1, u1)|2,

|Mλ1,λ2,σ,σ̄
sub,2 |2 =

Q2
fe2

(p̄ · k′)

[
2

1 − z2(1 − y2)
− 1 − z2

]
×|Mλ1,λ2,σ,σ̄

Born (s, t2, u2)|2, (31)

where |Mλ1λ2σσ̄
Born |2 are the squared Born helicity ampli-

tudes (7) for γγ → ff̄ . The auxiliary variables yi and zi

(i = 1, 2) are defined by

y1 =
pk′

pp̄ + pk′ + p̄k′ =
2pk′

s
, z1 =

pp̄

pp̄ + p̄k′ ,

y2 = y1

∣∣∣
p↔p̄

, z2 = z1

∣∣∣
p↔p̄

, (32)

and the Mandelstam variables ti and ui are defined as in
(3), but for auxiliary momenta pi and p̄i,

ti = (k1 − pi)2 = (k2 − p̄i)2 = −4E2 sin2 θi

2 ,

ui = (k1 − p̄i)2 = (k2 − pi)2 = −4E2 cos2 θi

2 . (33)

The auxiliary momenta are chosen such that pi → p and
p̄i → p̄ in the IR limit k′ → 0, that p1 → p + k′ and
p̄1 → p̄ if k becomes collinear to p, and that p̄2 → p̄ + k′
and p2 → p if k becomes collinear to p̄. Moreover, the
auxiliary momenta obey momentum conservation, p+ p̄+
k′ = pi + p̄i, and the mass-shell conditions, p2

i = p̄2
i = 0,

p1 = p + k′ − y1

1 − y1
p̄, p̄1 =

1
1 − y1

p̄,

p2 =
1

1 − y2
p, p̄2 = p̄ + k′ − y2

1 − y2
p. (34)

From this definition we can also deduce that the scattering
angles θi, which are defined in (33), are given by θ1 = θf̄

and θ2 = θf .

Checking that
∑

i |Msub,i|2 has the same asymptotic
structure as

∑
λ′ |Mγ |2 in the soft limit k′ → 0 and in

the collinear limits (p · k′), (p̄ · k′) → 0 is straightforward;
consequently the phase-space integral

σ1 =
N c

f

2s

∫
dΓ

[(∑
λ′

|Mγ |2
)

gcut(θf )gcut(θf̄ )

−
(∑

i

|Msub,i|2gcut(θi)
)]

(35)

=
N c

f

2s

∫
dΓ

[(∑
λ′

|Mγ |2
)

gcut(θf )gcut(θf̄ )

−
(

|Msub,1|2gcut(θf̄ )
)

−
(

|Msub,2|2gcut(θf )
)]

is finite and can be performed numerically. In (35) we indi-
cate the phase-space cuts from (25) explicitly by the step
functions (9). In the subtracted part, the cuts are applied
to the auxiliary momenta pi, p̄i. Since these approach the
physical momenta of the final-state fermions in the singu-
lar regions, the cuts do not obstruct the cancellation of the
singularities in (35) as long as they avoid the singularities.
The last equality holds because θ2 = θf and θ1 = θf̄ in
our case.

For the full cross section we have to add the integral of∑
i |Msub,i|2 that is evaluated with the regulators λ and

mf [19]. The functions |Msub,i|2 are constructed such that
the integration over the photon phase space can be per-
formed analytically, leading to universal correction factors
δ±
sub on the Born cross section σBorn (10) for γγ → ff̄ ,

σ2(σ, σ̄) = 2δ+
subσBorn(σ, σ̄) + δ−

subσBorn(−σ, σ̄)

+δ−
subσBorn(σ, −σ̄), (36)

where

δ+
sub = Q2

f

α

2π

{
ln
(

λ2

s

)
ln

(
m2

f

s

)
+ ln

(
λ2

s

)

−1
2

ln2

(
m2

f

s

)
+

1
2

ln

(
m2

f

s

)
+

5
2

− 2π2

3

}
,

δ−
sub = Q2

f

α

4π
. (37)

In (36), the Born cross sections σBorn are evaluated with
the restriction (8) on the scattering angle θ: θcut < θ <
180◦ − θcut. As required, the IR- and mass-singular terms
in 2δ+

sub exactly cancel against those terms in δvirt
QED. The

final result for the real-photon contribution to the cross
section is given by σγ = σ1 + σ2.

4 Numerical results

For the numerical evaluation, we have adopted the param-
eters [20]

α = 1/137.0359895,

MW = 80.41 GeV, (38)
MZ = 91.187 GeV.
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Fig. 5. Lowest-order and O(α)-corrected cross section for
γγ → e−e+

We need not specify the masses mf of the light fermions,
since these are only kept as regulating parameters, and
drop out in all considered observables. We discuss only un-
polarized cross sections. The nonvanishing cross sections
for polarized initial states and unpolarized final states dif-
fer from the unpolarized cross sections only by the nor-
malization.

In Fig. 5, we show the lowest-order and the O(α)-cor-
rected cross sections for γγ → e−e+ for the angular cuts
θcut = 5◦, 10◦, 20◦, 40◦. The Born cross sections vary from
137 pb to 33 pb for these cuts at

√
s = 100 GeV; they

scale like 1/s if the cut angle θcut is chosen to be energy-
independent, as can be seen in (10). Since the impact of
the O(α) corrections is hardly visible in Fig. 5, we show
the relative QED and weak corrections to γγ → e−e+

separately in Fig. 6 for two angular cuts.
For an energy-independent angular cut θcut, the QED

corrections (see Fig. 6) do not depend on the scattering
energy for s � m2

e , since all electron-mass singularities
cancel, and s is the only scale that survives. The can-
cellation of all potentially large QED corrections such as
α ln(m2

e/s)/π implies that the resulting QED correction
is of the order of O(α/π), i.e., of the order of several
per mille. The numerical results confirm this expectation.
The weak corrections stay below 0.05% for energies be-
low 100 GeV, and tend to zero in the low-energy limit.
In other words, weak-boson exchange decouples below the
electroweak scale. Above 100 GeV, the weak corrections
become sizeable and develop a peak at

√
s = 2MW, origi-

nating from diagrams with a W-pair cut in the s channel.
For energies up to 1 TeV, δweak reaches a negative per-
centage, then becomes more and more negative with in-
creasing energy, crossing the −10% mark at about 2 TeV.
The large negative corrections at high energies are due
to Sudakov-type logarithms, such as α ln2(M2

W/s)/π, and
the dominant contributions stem from W-boson exchange.

The lowest-order cross sections and the relative QED
corrections for γγ → ff̄ with arbitrary fermion flavour
can be easily obtained from the results on γγ → e−e+ by
multiplying the results for the e−e+ pair by the factors
N c

fQ4
f and Q2

f , respectively. In particular, this means that
the QED corrections to nonleptonic channels become even
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Fig. 6. Relative QED and weak corrections to γγ → e−e+,
and weak corrections to γγ → uū, dd̄

smaller. The weak corrections, however, depend on the
fermion flavour in a nontrivial way. Therefore, the relative
weak corrections are explicitly shown also for up-type and
down-type light quarks in Fig. 6. The shape of the weak
corrections to light-quark-pair production is qualitatively
similar to the one for lepton-pair production, but the light-
quark-pair-production weak corrections are larger in size.
For high energies we roughly get δuū

weak/δe−e+
QED ∼ 1.4 and

δdd̄
weak/δe−e+

QED ∼ 3. This enhancement of the relative weak
corrections is mainly due to the suppression of the lowest-
order cross section by the quark charges, which is not
present in the dominating CC corrections.

Table 1 summarizes the discussed results by providing
some representative numbers. At high energies, the weak
corrections are dominated by the CC corrections. The NC
corrections are at the level of 1% at 2 TeV.

We conclude our numerical discussion by a short com-
parison of the different methods for the singular phase-
space integration for real-photon emission, which are de-
scribed in Sect. 3.3.2. Table 2 compares numerical results
on δQED that have been obtained by performing the mul-
tidimensional integration with Vegas [21], using the same
Vegas parameters for each integration. The subtraction
method leads to an integration error that is smaller by a
factor of 10–20 with respect to the results from the two
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Table 1. Integrated Born cross section for γγ → e−e+, the corresponding
relative QED and weak corrections, and the weak corrections to γγ →
uū, dd̄

√
s/ GeV θcut σe−e+

Born / pb δe−e+
QED /% δe−e+

weak /% δuū
weak/% δdd̄

weak/%

10 5◦ 13722 1.30 0.00 0.00 0.00
10◦ 10130 0.74 0.00 0.00 0.00
20◦ 6595.2 0.33 0.00 0.00 0.00
40◦ 3270.9 −0.02 0.00 0.00 0.00

100 5◦ 137.22 1.30 0.02 0.05 0.26
10◦ 101.30 0.74 0.02 0.07 0.34
20◦ 65.952 0.33 0.03 0.10 0.49
40◦ 32.709 −0.02 0.05 0.14 0.73

500 5◦ 5.4889 1.30 −0.97 −1.39 −3.03
10◦ 4.0520 0.74 −1.29 −1.85 −4.08
20◦ 2.6381 0.33 −1.78 −2.62 −5.97
40◦ 1.3084 −0.02 −2.47 −3.79 −9.23

1000 5◦ 1.3722 1.30 −2.81 −3.88 −7.95
10◦ 1.0130 0.74 −3.61 −5.03 −10.49
20◦ 0.65952 0.33 −4.70 −6.69 −14.48
40◦ 0.32709 −0.02 −5.95 −8.78 −20.11

2000 5◦ 0.34306 1.30 −6.18 −8.27 −15.92
10◦ 0.25325 0.74 −7.62 −10.35 −20.38
20◦ 0.16488 0.33 −9.33 −12.98 −26.60
40◦ 0.081773 −0.02 −11.15 −15.98 −34.55

Table 2. Comparison of results for the QED correction δQED/% at
√

s = 500GeV,
obtained by the different methods for bremsstrahlung corrections described in Sect. 3.3

Method ∆E/E ∆α/rad θcut = 10◦ θcut = 20◦

IR slicing and 10−3 – 0.798 ± 0.016 0.345 ± 0.014
effective collinear factor 10−5 0.819 ± 0.029 0.329 ± 0.024

IR and collinear slicing 10−3 10−3 0.756 ± 0.011 0.3302 ± 0.0083
10−5 0.784 ± 0.015 0.349 ± 0.013

10−5 10−3 0.734 ± 0.019 0.323 ± 0.015
10−5 0.808 ± 0.027 0.324 ± 0.022

Subtraction scheme – – 0.74447 ± 0.00080 0.33124 ± 0.00069

versions of phase-space slicing. While there are still large
compensations between the phase-space integral and the
(semi-)analytically calculated singular parts in the slicing
approach, for the subtraction method all compensations
take place between δvirt

QED and 2δ+
sub, which are computed

without delicate numerical integrations. Table 2 illustrates
the consistent application of the different methods, but
the numbers for the smaller cut θcut = 10◦ also reveal
that Monte Carlo integration by Vegas tends to underes-

timate integration errors if the integrand becomes com-
plicated, although it has been smoothed by appropriate
transformations of the integration variables4. The sub-
traction method is distinguished by the fact that it is less
sensitive to numerical uncertainties.

4 Repeated evaluations for θcut = 10◦ show that the results
obtained with the two slicing variants come closer and closer to
that of the subtraction method given in Table 2 if the statistics
is improved.
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5 Summary

The O(α) corrections to γγ → ff̄ in the standard model
have been calculated for arbitrary light fermions f , i.e.,
fermion-mass effects are neglected. Compact analytical
results for the cross sections have been listed for arbi-
trary polarization configurations, rendering their incorpo-
ration in computer codes very simple. Numerical results
on the corrections to integrated cross sections have been
discussed.

The corrections are classified into QED and purely
weak corrections. Owing to the cancellation of all mass-
singular contributions between virtual and real-photon cor-
rections, the QED corrections to integrated cross sections
are of O(Q2

fα/π) for all energies, i.e., of the order of some
per mille. For lepton-pair production, the weak corrections
are negligible below the weak-boson scale, reach a mod-
erate negative percentage at 1 TeV, and reduce the cross
section more and more with increasing energy, crossing
−10% at about 2 TeV. For up- and down-type quarks, the
weak corrections to the integrated cross sections show the
same qualitative features as in the leptonic case, but the
corrections are a few times larger. The weak corrections
vanish whenever the differential cross sections develop t-
or u-channel poles, i.e., the relative corrections can be en-
hanced or suppressed by appropriate angular cuts.

The smallness and the structure of the corrections to
γγ → e−e+, µ−µ+ underline the suitability of these pro-
cesses as a luminosity monitor. In particular, the correc-
tions do not exhibit large uncertainties induced by hadron-
ic effects in the photonic vacuum polarization or by the
less-precisely-known top quark, or even by the unknown
Higgs-boson mass. The results for the processes γγ → qq̄
provide a valuable input for QCD studies.

Appendix

List of scalar integrals

Here we list all scalar one-loop integrals that are needed
for the evaluation of the virtual corrections given in Sect. 3.
We use the same definition of the momentum-space inte-
grals and of the arguments of the standard functions B0,
C0, and D0 as given in the appendix of [7]. The rele-
vant integrals are calculated for the limit |s|, |t|, |u|, M2

W �
m2

f , m2
f ′ . By definition, Mandelstam variables with a hat

get an infinitesimal imaginary part iε, with ε > 0, i.e.,
ŝ = s + iε, etc. After supplying this imaginary part where
necessary, all scalar integrals can also be obtained from
those for Compton scattering in [7], with the use of cross-
ing symmetry. Scalar functions that are related by the
interchange of t and u are given generically, with the ab-
breviation r = t, u.

All needed 2-point functions B0 are calculated in D
space-time dimensions with D → 4. Instead of using B0
directly, we have preferred to introduce the UV-finite com-
binations

B0(s, 0, 0) − B0(0, 0, MW) = B(s)

= ln
(

−M2
W

ŝ

)
+ 1,

B0(r, 0, MW) − B0(0, 0, MW) = Bw(r)

=
(

M2
W

r
− 1
)

ln
(

1 − r̂

M2
W

)
+ 1,

B0(s, MW, MW) − B0(0, 0, MW) = Bww(s)
= βw ln(xw) + 1, (A.1)

with the abbreviations

xw =
βw − 1
βw + 1

, βw =

√
1 − 4M2

W

ŝ
. (A.2)

The relevant 3- and 4-point functions are given by

C0(0, 0, s, mf ′ , mf ′ , mf ′) = C(s) =
1
2s

ln2

(
− ŝ

m2
f ′

)
,

C0(m2
f , 0, r, MW, mf ′ , mf ′) = C̄w(r)

=
1
r

[
Li2

(
r

M2
W

)
− ln

(
m2

f ′

M2
W − r

)
ln
(

1 − r

M2
W

)]
,

C0(0, 0, s, 0, MW, 0) = Cw(s)

=
1
s

[
−Li2

(
1 +

ŝ

M2
W

)
+

π2

6

]
,

C0(0, 0, r, 0, MW, MW) = C̄ww(r) = −1
r

Li2

(
r

M2
W

)
,

C0(0, 0, s, MW, 0, MW) = Cww(s) =
1
s

ln2(xw), (A.3)

C0(0, 0, s, MW, MW, MW) = Cwww(s) =
1
2s

ln2(xw),

D0(0, 0, 0, 0, s, r, mf ′ , MW, mf ′ , mf ′) = Dw(s, r)

=
1

s(r − M2
W)

[
Li2

(
1 +

ŝ

M2
W

)

−4 Li2

(
r

r − M2
W

)
+

1
2

ln2

(
− ŝ

m2
f ′

)

+2 ln

(
− ŝ

m2
f ′

)
ln
(

1 − r

M2
W

)
− π2

6

]
,

D0(0, 0, 0, 0, t, u, MW, MW, mf ′ , mf ′) = Dww(t, u)

=
1

tu − M2
W(u + t)

×
[
2 Li2

(
1 + xtu − t̂

M2
W

xtu

)

+2η

(
−xtu, 1 − t̂

M2
W

)
ln
(

1 + xtu − t̂

M2
W

xtu

)

−2 Li2(1 + xtu) + ln

(
M2

W − t

m2
f ′

)
ln
(

1 − t

M2
W

)]
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+ (t ↔ u),

with xtu =
M2

W(t̂ + û)
t̂û − M2

W(t̂ + û)
,

D0(0, 0, 0, 0, s, r, MW, 0, MW, MW) = Dwww(s, r)

=
1√

ŝ2(r̂ − M2
W)2 − 4r̂2ŝM2

W

2∑
n=1

(−1)n+1

×
[
3 Li2(1 + xn) − Li2

(
1 +

xnM2
W

M2
W − r̂

)

−η

(
−xn,

M2
W

M2
W − r̂

)
ln
(

1 +
xnM2

W

M2
W − r̂

)

+ ln
(

1 − r̂

M2
W

)
ln(−xn) −

∑
τ=±1

{Li2 (1 + xnxτ
w)

+η (−xn, xτ
w) ln (1 + xnxτ

w)}
]

,

(A.4)

with xw and βw as given in (A.2), and

x1,2 =
ŝ(r̂ − M2

W) − 2r̂M2
W ±√ŝ2(r̂ − M2

W)2 − 4r̂2ŝM2
W

2(r̂ + ŝ)M2
W

.

(A.5)
The dilogarithm Li2(x) and the function η(x, y) are de-
fined as usual:

Li2(x) = −
∫ x

0

dt

t
ln(1 − t), −π < arc(1 − x) < π,

(A.6)

η(x, y) = ln(xy) − ln(x) − ln(y),
−π < arc(x), arc(y) < π. (A.7)
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